早晨七点五十分,高数教室。
林澈坐在第三排靠窗的位置,阳光斜照在摊开的空白草稿纸上,泛起一层毛茸茸的金边。教室里弥漫着考试前特有的紧张气息——翻书声、窃窃私语声、笔尖划纸声,还有前排女生拧开风油精的清脆声响。
他低头看着试卷。
《高等数学A(1)第一次月考》,题头印刷着宋体字。前世,这张卷子他得了61分,擦线及格,主要失分在最后两道证明题。他还记得赵建国教授批改时用红笔写的评语:“思路混乱,基础不牢,建议课后多练习。”
这一次,他要写一个完全不同的故事。
“考试开始。”
讲台上,监考的赵建国教授推了推老花镜,声音沉稳。他是系里有名的严师,五十多岁,头发花白但梳得整齐,中山装熨烫得一丝不苟。
林澈拿起笔。
第一题,求极限。$\lim_{x\to0}\frac{\sin3x}{\tan5x}$
前世他用了洛必达法则,计算过程中漏了一个系数,得出了$\frac{3}{5}$的错误答案。正确答案应该是$\frac{3}{5}$……不,等等。
林澈的笔尖停顿了。
记忆告诉他答案是$\frac{3}{5}$,但直觉在报警。他闭上眼睛,七年前的记忆像老照片一样在脑中展开——他记得考完对答案时,学霸张涛说第一题是$\frac{3}{5}$,但第二天赵建国讲解时,说正确答案是$\frac{3}{5}\cdot\frac{\cos0}{\cos0}$……不对,$\tan5x$在$x\to0$时等价于$5x$,$\sin3x$等价于$3x$,所以——
笔尖落下:$\frac{3}{5}$。
写完后,林澈盯着那个数字看了三秒。有什么地方不对劲。他看向窗外,梧桐树的影子在地上轻轻摇晃。记忆和直觉在打架。
“同学,专心答题。”赵建国的声音从讲台传来。
林澈收回目光,继续往下做。
第二题,求导数。$y=\ln(\sqrt{x^2+1}+x)$
这道题前世他做对了,但步骤繁琐。现在他一眼看出可以直接用双曲函数性质简化:这其实就是$\operatorname{arsinh}x$的导数,等于$\frac{1}{\sqrt{x^2+1}}$。
他在
本章未完,请点击下一页继续阅读!