用比值判别法,$\lim_{n\to\infty}\frac{a_{n+1}}{a_n}=\lim_{n\to\infty}\frac{(n+1)!}{(n+1)^{n+1}}\cdot\frac{n^n}{n!}=\lim_{n\to\infty}\frac{n+1}{n+1}\cdot(\frac{n}{n+1})^n=\frac{1}{e}0$,$g(x)$严格递增,$g(1)>g(0)=0$,即$e^{-1}f(1)>0$,$f(1)>0$,这有可能成立,不矛盾。
所以不能直接证明。
他闭上眼睛,深呼吸。考场上的空气混着纸墨和汗水的味道。前世那些熬夜复习的夜晚在脑中浮现——他在图书馆抄过这道题的答案,赵建国在黑板上讲过……
构造函数$F(x)=e^{-x^2}f(x)$,然后……然后要用罗尔定理!因为$F(0)=0$,还需要另一个零点才能用罗尔定理。但题目只给了$f(0)=0$,没给$f(1)=0$。
除非——
林澈睁开眼睛。
除非$f(1)$恰好等于某个值,使得$F(1)=F(0)$?不对,那太巧合了。
他的目光落在试卷的题号上:“七、证明题(15分)”。记忆的闸门突然打开:前世考完后,赵建国在讲解时说:“这道题的关键是构造辅助函数$g(x)=e^{-x^2}f(x)$,然后对$g(x)$应用柯西中值定理,取另一个函数为$h(x)=e^{x^2}$……”
对了!
林澈几乎要拍桌子。他立刻在草稿纸上写:
“构造函数$g(x)=e^{-x^2}f(x)$,$h(x)=e^{x^2}$。则$g(0)=0$,$h(0)=1$,且$g(x),h(x)$在$[0,1]$上满足柯西中值定理条件。故存在$\xi\in(0,1)$,使得
$\frac{g(1)-g(0)}{h(1)-h(0)}=\frac{g'(\xi)}{h'(\xi)}$
即$\frac{e^{-1}f(1)}{e-1}=\frac{e^{-\xi^2}[f'(\xi)-2\xi f(\xi)]}{2\xi e^{\xi^2}}$
化简得$f'(\xi)-2\xi f(\xi)=
本章未完,请点击下一页继续阅读!