消去参数。
他抬头看钟,考试开始四十分钟。教室里大部分人还在挣扎,前排的学霸张涛眉头紧锁,显然也被最后一题难住了。苏雨薇在检查卷子,但眼神有些飘忽。
林澈开始从头检查。
第一题,$\lim_{x\to0}\frac{\sin3x}{\tan5x}$。他盯着那个$\frac{3}{5}$,那种不对劲的感觉又来了。他重新计算:$\sin3x\sim3x$,$\tan5x\sim5x$,所以极限是$\frac{3x}{5x}=\frac{3}{5}$。
但$\tan5x$在$x\to0$时等价于$5x$吗?$\tan\theta\sim\theta$当$\theta\to0$,这里$\theta=5x\to0$,没错。
可是……林澈闭上眼睛,前世赵建国讲解这道题的声音在脑中回响:“很多同学直接用了等价无穷小,但要注意,$\tan5x$在$x\to0$时确实是$5x$的高阶无穷小吗?我们严格计算一下……”
对了!赵建国当时强调了不能直接用等价无穷小,因为分子分母是加减关系?不,这里是乘除,可以用。
但教授说:“这道题我特意设计了一个陷阱,$\tan5x$在$x\to0$时等价于$5x$,但$\sin3x$等价于$3x$,所以答案是$\frac{3}{5}$——如果你这么想,就掉坑里了。因为$\tan5x=5x+\frac{125}{3}x^3+O(x^5)$,展开到三阶项会影响结果吗?我们算一下……”
林澈的笔在草稿纸上飞快运算:
$\sin3x=3x-\frac{27}{6}x^3+O(x^5)=3x-\frac{9}{2}x^3+O(x^5)$
$\tan5x=5x+\frac{125}{3}x^3+O(x^5)$
所以$\frac{\sin3x}{\tan5x}=\frac{3x-\frac{9}{2}x^3+O(x^5)}{5x+\frac{125}{3}x^3+O(x^5)}=\frac{3}{5}\cdot\frac{1-\frac{3}{2}x^2+O(x^4)}{1+\frac{25}{3}x^2+O(x^4)}$
当$x\to0$时,这确实趋于$\frac{3}{5}$。所以答案没错。
本章未完,请点击下一页继续阅读!