量传递。
就像是“预备”姿势是肌肉储能的关键环节,此时运动员需通过肌肉预紧张,将肌肉纤维拉伸至“最佳收缩长度”。
即肌肉初长度等于静息长度的1.2倍。
以激活肌梭与高尔基腱器官。
提升肌肉收缩速度。
传统直臂起跑中,上肢肌肉,肱三头肌、三角肌等处于“过度拉伸”状态。
直臂支撑时,肱三头肌初长度为静息长度的1.4倍,超过最佳收缩范围,导致其收缩力下降15%-20%。
而博尔特身高臂长,曲臂起跑时,肘关节弯曲90°-100°,肱二头肌初长度为静息长度的1.1-1.2倍,肱三头肌初长度为1.0-1.1倍,均处天然于最佳收缩区间。
肌电数据显示,此时上肢肌群的预激活程度比直臂起跑高18%。
这就可以为后续摆动发力做好准备。
再加上下肢肌群的储能效率也因曲臂姿势得到优化。
博尔特曲臂“预备”时,膝关节弯曲角度为135°-140°,腘绳肌初长度增加5%-8%,其弹性势能储存量提升12%。
髋关节弯曲角度为110°-115°,臀大肌初长度处于最佳范围。
如此。
收缩时可产生更大的蹬地力量。
只要做到以上几点,就可以假设博尔特发令枪响后,能量释放的核心是“上下肢协同发力”,即下肢蹬地与上肢摆动的时间差需控制在0.02秒以内,避免出现“发力脱节”。
传统直臂起跑中,高身高运动员因上肢支撑距离长,推离地面时需额外消耗0.03-0.05秒的时间,导致上肢摆动滞后于下肢蹬地,出现“下肢先发力、上肢后跟进”的现象,能量传递效率下降。
只要能做到,在米尔斯的设想里面。
博尔特曲臂起跑的能量释放,就可以具有“同步性优势”。
什么叫做同步性优势?
米尔斯分为三点来看——
1.蹬地瞬间,下肢肌群股四头肌、臀大肌,率先发力,产生垂直支撑反力,巅峰值达3.2倍体重。同时髋关节快速伸展,推动躯干前移;
2.上肢方面,曲臂姿势使手臂摆动的“力臂缩短”,肱二头肌与肱三头肌的收缩速度提升25%,摆动频率从直臂时的1.2次/秒提升至1.5次/秒,确保上肢摆动与下肢蹬地的时间差控制在0.01-0.02秒,实现“上
本章未完,请点击下一页继续阅读!